Microindentation – a tool for measuring cortical bone stiffness?
نویسندگان
چکیده
OBJECTIVES Microindentation has the potential to measure the stiffness of an individual patient's bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. METHODS A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded. RESULTS A total of 1094 abstracts were retrieved and 32 papers were included in the analysis, 20 of which used reference point indentation, and 12 of which used traditional depth-sensing indentation. There are several factors that must be considered when using microindentation, such as tip size, depth and method of analysis. Only two studies validated microindentation against traditional mechanical testing techniques. Both studies used reference point indentation (RPI), with one showing that RPI parameters correlate well with mechanical testing, but the other suggested that they do not. CONCLUSION Microindentation has been used in various studies to assess bone stiffness, but only two studies with conflicting results compared microindentation with traditional mechanical testing techniques. Further research, including more studies comparing microindentation with other mechanical testing methods, is needed before microindentation can be used reliably to calculate cortical bone stiffness.Cite this article: M. Arnold, S. Zhao, S. Ma, F. Giuliani, U. Hansen, J. P. Cobb, R. L. Abel, O. Boughton. Microindentation - a tool for measuring cortical bone stiffness? A systematic review. Bone Joint Res 2017;6:542-549. DOI: 10.1302/2046-3758.69.BJR-2016-0317.R2.
منابع مشابه
Technical note: Recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation
Impact microindentation is a novel method for measuring the resistance of cortical bone to indentation in patients. Clinical use of a handheld impact microindentation technique is expanding, highlighting the need to standardize the measurement technique. Here, we describe a detailed standard operation procedure to improve the consistency and comparability of the measurements across centers.
متن کاملMeasuring the thickness of buccal cortical bone of maxillary premolar teeth by cone beam computed tomography technique
Background and Aims: Immediate implant placement following tooth extraction is a treatment with many advantages. Alveolar bone preservation after immediate implant, need minimum of 2 mm thickness in buccal bone plate. The aim of this study was to evaluate the thickness of buccal cortical bone of maxillary premolars by Cone Beam Computational Tomography (CBCT) technique. Materials and Methods: ...
متن کامل[Bone microindentation and pressure algometry applied to revision total knee replacement and tibial end-of-stem pain. Preliminary results in a group of twenty patients].
OBJECTIVES To study the relationship between the appearance of end-of-stem pain with a preoperative decrease in local bone strength by using the bone microindentation technique. The potential usefulness of pressure algometry in the diagnosis and monitoring of this group of patients is also determined. MATERIAL AND METHOD A preliminary intra- and inter-rater correlation study was performed in ...
متن کاملDeterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures.
Postmenopausal women with vertebral fractures have abnormal bone microarchitecture at the distal radius and tibia by HR-pQCT, independent of areal BMD. However, whether trabecular plate and rod microarchitecture is altered in women with vertebral fractures is unknown. This study aims to characterize the abnormalities of trabecular plate and rod microarchitecture, cortex, and bone stiffness in p...
متن کاملDynamic monitoring of cell mechanical properties using profile microindentation
We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017